Journal of Organometallic Chemistry, 295 (1985) 149–158 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PREPARATION AND SPECTROSCOPIC STUDIES OF SOME CYCLIC UREA ADDUCTS OF TRIPHENYL-TIN AND -LEAD HALIDES *

CLARE T. AITKEN and MARIO ONYSZCHUK

Department of Chemistry, McGill University, Montreal, PQ, H3A 2K6 (Canada) (Received March 13th, 1985)

Summary

1,3-Dimethyl-2-imidazolidinone (dimethylethylene urea, DMEU) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone (dimethylpropylene urea, DMPU) adducts of the type Ph₃SnX · L (X = Cl, Br and I), Ph₃PbX · L (X = Br, I), 3Ph₃PbCl · 2DMEU and 2Ph₃PbCl · DMPU have been prepared and characterized. Assignments are made for ν (CO) and ν (CN) frequencies in the IR, and for skeletal frequencies observed in both the IR and Raman spectra in the range 400 to 100 cm⁻¹. Infrared measurements show that the adducts are bound through the carbonyl oxygen, and are highly dissociated in dichloromethane solution. ¹H and ¹¹⁹Sn or ²⁰⁷Pb NMR measurements reveal that ligand exchange, fast on the NMR time scale, occurs in solution. Coordination of the ligand causes a large upfield shift in the ¹¹⁹Sn or ²⁰⁷Pb resonances, but Ph₃MI · L have shifts similar to those for the parent iodides, indicating almost complete dissociation. Thermodynamic parameters are reported for the dissociation of Ph₃SnX · DMPU (X = Cl, Br) in CH₂Cl₂ solution.

Introduction

Recently, it has been proposed that the carcinogenic hexamethylphosphoramide (HMPA) be replaced by the cyclic urea DMPU for reactions requiring a dipolar aprotic solvent [1]. HMPA is a powerful ligand [2–4] and a number of adducts of the type $Ph_3MX \cdot HMPA$, where M = Sn or Pb, and X = Cl, Br and I, have been prepared and studied spectroscopically [5,6]. It was of particular interest, therefore, to attempt the preparation of a series of analogous adducts using DMPU and the

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} Presented by C.T.A. at the Fourth International Conference on the Organometallic and Coordination Chemistry of Germanium, Tin and Lead, Montreal, Canada, 1983, paper H-6.

similar DMEU as ligands, illustrated below, and to study them by vibrational and NMR spectroscopy.

Little has been reported in the literature on organometallic compounds of Group IV elements with either acyclic or cyclic ureas, despite the fact that these molecules offer both nitrogen and oxygen atoms for coordination. To date, no cyclic urea complexes of phenyltin or lead halides have been reported, perhaps due to the cyclic ureas not being commercially available until recently. Studies of 2-imidozolidinone (ethylene urea) and 2(1H)-tetrahydropyrimidinone (propylene urea) as ligands in a variety of non-Group IV complexes, show that these ligands coordinate via the oxygen atom [7,8]. Shifts in the $\nu(CO)$ frequency of the ligands tetramethylurea and urea upon coordination to methyl- and phenyl-tin halides also indicate that it is the oxygen atom which coordinates to the metal [9].

Experimental

Deuterated solvents were used as received from Merck, Sharp and Dohme. Non-deuterated solvents were purified by standard methods. The compounds Ph_3SnCl and Ph_3PbCl were used as received from Alfa; Ph_3PbBr and Ph_3PbI were supplied by R. Cuenca of our laboratory, and were used as obtained. Ph_3SnBr was prepared by the reaction of Ph_3SnCl with excess NaBr in methanol. Ph_3SnI was prepared by the reaction of Ph_3SnCl with excess NaI in acetone.

The adducts were prepared in the same way for L = DMEU and DMPU. The parent compound, Ph₃MX (2 g) was suspended in toluene (5 ml) together with the appropriate liquid ligand (3 ml, excess). Upon addition of the ligand, the parent compound dissolved. The adducts tended to crystallize upon cooling at 0°C for 1 h. In some cases a few drops of pentane were added to initiate crystallization. All the complexes were recrystallized from hot toluene and dried in air. The DMEU adducts appeared to be 'wet' and so were pumped in a vacuum overnight at room temperature. Elemental analyses for C, H and N were determined in duplicate by Guelph Chemical Laboratories, Guelph, Ontario. Melting points were measured on a Thomas Hoover melting point apparatus and are uncorrected.

Raman spectra of powders in capillary tubes and both mid- and far-IR spectra of samples as Nujol mulls were measured as described elsewhere [10]. Solution IR were recorded on a Perkin-Elmer 297 instrument using NaCl cells. All frequencies are accurate to ± 1 cm⁻¹ for sharp peaks.

Nuclear magnetic resonance spectra were recorded on a 200 MHz Varian XL-200 FT spectrometer. ¹H NMR spectra were measured at 200 MHz as 5% w/v solutions in CD_2Cl_2 with TMS as internal standard. The chemical shifts were measured with digital resolution of 0.25 Hz. The FIDs were collected into 16K data points using a spectral width of 2000 Hz. Chemical shifts were accurate to within ± 0.005 ppm.

¹¹⁹Sn and ²⁰⁷Pb NMR spectra were obtained at natural abundance for 0.25 *M* solutions in dry CH_2Cl_2 or as saturated solutions, and were measured at 74.6 MHz (digital resolution 3.1 Hz) and 41.8 MHz (digital resolution 3.3 Hz), respectively, using as external references Me_4Sn or Et_4Pb in C_6D_6 (50%), the latter providing the external lock signal. Negative chemical shift values indicate upfield shifts from the references. The FIDs were collected into 32K data points with a spectral width of 50,000 Hz. In the ²⁰⁷Pb spectra, complete proton noise decoupling was employed. The decoupler was 'gated' in the case of the ¹¹⁹Sn spectra with a delay of 5 s. This led to much longer spectral collection times for this nucleus. All spectra were measured at room temperature ($20 \pm 3^{\circ}C$).

Results and discussion

Analytical data

The analytical data for all the adducts prepared are summarized in Table 1. These adducts are air-stable, crystalline solids which are soluble in dichloromethane, but insoluble in pentane. Ten of the twelve complexes made, namely 1 to 3, 5 to 9, and 11 to 12, have analyses corresponding to 1:1 molecular adducts, $R_3MX \cdot L$, but complexes 4 analyzed as a 3:2 adduct, while complex 10 is a 2:1 adduct. Nine of the twelve adducts melted sharply. The complexes 4, 6, and 10 decomposed when heated in the range 96 to $123^{\circ}C$.

Vibrational spectra

Infrared $\nu(CO)$ and $\nu(CN)$ group frequencies for adducts 1 to 12 in the solid state (Table 1) indicate a decrease in $\nu(CO)$ and, in most cases, a small increase in $\nu(CN)$ upon coordination, consistent with coordination being through the carbonyl oxygen rather than through ring nitrogen atoms. Moreover, solution spectra gave $\nu(CO)_{\text{free}}$ peaks more intense than $\nu(CO)_{\text{bound}}$ (Table 1), showing that, at least qualitatively, adducts 1 to 12 are highly dissociated in CH₂Cl₂ solution.

Skeletal frequencies (400–100 cm⁻¹) in both the IR and the Raman are given in Tables 2 and 3, with assignments based on those for the parent phenyllead halides reported by Clark et al. [12], and by Wharf et al. [5,6] for the analogous HMPA adducts. The presence of distinct peaks for $v_{as}(SnPh_3)$ and $v_s(SnPh_3)$ modes in IR and Raman spectra, respectively, suggests a symmetry lower than C_{3v} , probably due to asymmetry of the ligand. Lead-oxygen stretching bands have been assigned in the region 195–206 cm⁻¹, slightly lower than in the corresponding tin complexes whose tin-oxygen stretching bands ranged from 225 to 238 cm⁻¹. These ranges are similar to those obtained for the analogous HMPA complexes [4,5]. Values of v(M-X) are lower than those found in the parent, monomeric and four-coordinate Ph₃MX [5,12]; they are consistent with a five-coordinate structure, like that in HMPA adducts [6], Ph_nSnX_{3-n} (n = 2, 3) [10], and Ph₃PbX₂⁻ (X = I, Br) [13], probably with M-X bonds axial.

The formulation of complexes 4 and 10 as 3:2 and 2:1 adducts, respectively, as determined by elemental analysis, implies the presence of bridging chlorines in molecular, ionic, or polymeric structures. Vibrational data do not allow us to distinguish among the possible structures; single crystal X-ray data are necessary. Bands in the infrared due to bridging chlorines are lower in frequency than terminal ones, but the presence of internal ligand vibrations below 200 cm⁻¹ prevented the

Compound	Colour	Yield "	M.p.	Analysis (Found (calc	cd.) (%))	Δ ν (CO) ^c	$\Delta \nu(CN)^{d}$	»(CO) °		»(CN) /
		(%)	(°C)	c	Н	z	-		free	punoq	
Ph ₃ SnCl·DMEU	white	71	113	55.42	5.18	5.80	- 63	+3	1694	1656	8
(1)				(55.20)	(2.04)	(2.60)					
Ph ₃ SnBr·DMEU	cream	47	95–97	50.74	4.58	5.07	- 62	+1	1694	1656	6c
(2)				(50.70)	(4.63)	(5.15)					
Ph ₃ SnI · DMEU	yellow	59	106 - 108	46.80	4.27	4.76	- 60	+1	1685	1658	ÞC
(3)				(46.70)	(4.26)	(4.74)					
3Ph ₃ PbCI-2DMEU	white	80	121-123 6	46.87	4.33	3.71	- 50	+ 5	1696	1666	80
(4)				(46.61)	(3.97)	(3.40)					
Ph ₃ PhBr-DMEU	white	54	108 - 110	43.63	4.15	4.44	-41	+3	1691	1661	×
(5)				(43.67)	(3.99)	(4.43)					
Ph ₃ PhI.DMEU	pale	63	96 ^p	40.60	3.78	4.03	- 44	+5	1691	1658	80
(9)	yellow			(40.68)	(3.71)	(4.12)					
Ph ₃ SnCl·DMPU	white	45	121-122	56.03	5.41	5.62	-63	8 +	1629	1581	1316
()				(56.12)	(5.30)	(5.45)					
Ph ₃ SnBr·DMPU	pale	76	137-139	51.63	4.90	5.09	- 65	+5	1631	1580	1318
(8)	yellow			(51.65)	(4.88)	(5.02)					
Ph ₃ SnI · DMPU	bright	82	146 - 148	47.55	4.46	4.61	-62	+5	1628	1579	1310
(6)	yellow			(47.64)	(4.50)	(4.63)					
2Ph3PbCI+DMPU	white	67	123^{b}	46.70	3.52	2.77	- 54	+6	1630	1594	1310
(10)				(46.89)	(3.94)	(2.60)					
Ph₃PbBr·DMPU	white	56	126	44.39	4.25	4.39	- 58	+1	1631	1596	1310
(11)				(44.62)	(4.21)	(4.34)					
Ph ₃ PbI · DMPU	cream	45	136–137	41.57	3.96	4.07	- 48	+3	1636	1598	1310
(12)				(41.56)	(3.92)	(4.04)					
^a After recrystallizatio $\nu(CN)_{free}$, where C is cm ⁻¹ reconcitually / F	in from tolue the carbonyl	ne. ^b Decom for complex	position temper es as Nujol mull	atures. 'For ls. 'For con	r complexes	s as Nujol r CH ₂ Cl ₂ sol	nulls, Δν(CO) = ution; for DMF	= \n(CO) hound - EU and DMPU	ν (CO) _{free} . in CH ₂ Cl.	$ \frac{d}{d} \Delta \nu (CN) = \frac{d}{dr} \frac{d}{dr}$	= v(CN) _{bound} – 1696 and 1631
cm , respectively. r	OF CUMPICAC	5 III (LI2)(12)	Solution; P(LIN)) are 120/ an	IIID OTCT D	INU TOT	U and DMrV	respectively.	reak prese	nt as a dirii	ISE, DFOAU DAIIU.

ANALYTICAL AND INFRARED DATA

TABLE 1

Assignment	Ph ₃ SnCl	I-DMEU	Ph ₃ SnBr	· DMEU	Ph ₃ SnI ·]	MDEU	Ph ₃ SnCl	DMPU	Ph ₃ SnBr	DMPU	Ph ₃ SnI	DMPU
	IR	R	IR	R	R	~	IR	R	IR	R	IR	R
$v_{as}(Sn-Pb)$	274s		274s	274w	276s		274s ^c		278s	275w	276s	274w
(Sn-Cl)	267sh	264m					274s ^c	267m				
√(Sn−O)	238m 230sh	237w	233sh 228m	232w	232s	228w	236т	233w	235s	.229w	230s	225sh
⁴ ا	210m	218vs	214w	215vs	213sh	212m ^c	212m	217vs	206w	211vs	199s	213m
_s (Sn-Ph) (τ.) ^b	203w	205s	204w	205s	208w	212m ^c	202m	202s	190sh	q	193sh	Ø
(Sn-Br)			172s	171 m					172s	167vs		
(Sn-I)					134s	132vs					131s	127vs
<i>د</i> ۹	195sh		80w 155w			152m		193sh		158sh		. 155w
S(Sn-Cl)	153m							146m				
Deformations										105sh		101sh
S(Sn-Br)										71sh		

SKELETAL VIBRATIONS (cm⁻¹) FOR Ph₃SnX·L ADDUCTS^{*a*} **TABLE 2**

153

IR R IR IR v_{i} (Pb-Ph) 235sh 234w 228s 229w 227s 236s 234w 229s 234w 229s 236s 24s 236s 24s 206s 109m 206s 199m 206s 199m 206s 199m 206s 199m 140s 140s<	Assignment	3Ph ₃ PbC	1-2DMEU	Ph ₃ PbBr	DMEU	Ph ₃ PbI·E	OMEU	2Ph ₃ PbCl	DMPU	Ph ₃ PbBr-	DMPU	Ph ₃ PbI·D	MPU
		R	2	R	R	R	2	R	2	IR	R	IR	R
ν (Pb-Cl) 223 sh 203m 218w 222 sh 205m 20 w ν (Pb-Ol) 203m 203m 205m 206m ν (Pb-Ol) 203m 203m 205m 206m ν (Pb-Ol) 182m 186w 179 sh 206m 206m ν (Pb-Ph) 206 sh 198 s 179 sh 184m 206m ν (Pb-Ph) 206 sh 198 s 206 sh 197 s 200 sh 199 sh ν (Pb-Br) 206 sh 198 s 206 sh 194 s 200 sh 199 sh ν (Pb-I) 152 s 151 w 122 s 121 v s 139 sh ν (Pb-I) 151 sh 94 sh 122 sh 150 sh 158 sh ν 101 sh 94 sh 150 sh 168 sh 168 sh	$r_{as}(Pb-Ph)$	235sh 229s	234w	228s	229w	227s		230s	234w	229s	229w		230sh 220s
ν (Pb-O) 203m 203m 201m 205m 206m 200vs 199m 200vs 199m	»(Pb-Cl)	222sh	218w					212m	220w				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	»(Pb-0)	203m		203m		201m		205m		206m		195w	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 n	182m	186w 173w		179sh			184m				172w	170sh
(Pb-Br) 152s 151w 149s p(Pb-1) 152s 151w 149s p(Pb-1) 151w 122s 121vs 149s Deformations 69sh 62sh 150w 108sh	ν _s (Pb–Ph) (1.) ^b	206sh	198vs		194vs	206w	197m		200vs	199m	201 vs	207m	202vs
r (Pb-1) 122s 121vs 155w x ^b 151w 155w 155w 155w 101sh 94sh 150w 108sh 150w 108sh	v(Pb-Br)			152s	151w					149s	151m		
x ^b 151w 155w 101sh 94sh 108sh Deformations 69sh 62sh 150w 108sh	r(Pb-I)					122s	121vs					119s	117vs
101sh94shDeformations69sh62sh150w	<i>4</i> X		151w						155w				155w
Deformations 69sh 62sh 150w 108sh			101sh		94sh					,			
	Deformations		69sh		62sh		150w		108sh				96sh
55sh 42sh 60sh			55sh		42sh		60sh						58sh
	AS NUJOI MULLS	perween poi	iyeunyiene pis	ILES. WILL	en's notation	1 [11].							

SKELETAL VIBRATIONS (cm⁻¹) FOR Ph₃PbX·L ADDUCTS^d

TABLE 3

assignment of any bridging Pb–Cl stretching frequencies. The IR spectra of both $3Ph_3PbCl \cdot 2DMEU$ and $2Ph_3PbCl \cdot DMPU$ did, however, show a lower baseline relative to that observed in the bromide and iodide complexes, below approximately 200 cm⁻¹. This suggests the presence of a superimposed peak (or peaks) in the bridging chlorine region.

¹H NMR spectra

Only single ¹H NMR peaks were observed for ligand protons in CD_2Cl_2 solution spectra of the complexes (Table 4), suggesting that rapid exchange occurs between free and complexed species on an NMR time scale. In fact, proton chemical shifts $\delta(CH_3)$ and $\delta(CH_2)$ were either unchanged or only slightly shifted from those of the free cyclic ureas in CD_2Cl_2 solution. These observations strongly support the conclusion, previously made on the basis of infrared data, that complexes are highly dissociated in CD_2Cl_2 solution.

Aromatic proton resonances appeared as two, well separated sets of multiplets; the one at low field arising from *ortho* protons, and other at high field from the *meta* and *para* protons. This pattern has been shown by Sau et al. [14,15] to be characteristic of phenyl-substituted pentacoordinated compounds of Main Group elements, when the separation between the two multiplets is greater than in those of related tetracovalent compounds. The multiplet separation for Ph₃SnCl in CD₂Cl₂

TABLE 4

¹H NMR DATA FOR COMPLEXES $Ph_3MX \cdot L^a$ WHERE M = Sn AND Pb, X = Cl, Br AND I, AND L = DMEU AND DMPU

^a Measured in CD_2Cl_2 . Chemical shifts measured in ppm relative to internal TMS accurate to ± 0.005 ppm. Coupling constants measured in Hz. Digital resolution 0.25 Hz. ^b Ortho protons of phenyl rings.

^e Middle CH₂-quintet. ^f CH₂'s bonded to N.

^c Meta/para protons of phenyl rings. ^d $\Delta = \delta$ (ortho multiplet) – δ (meta/para multiplet) in ppm.

was 0.20 ppm, almost the same as that observed in five of the six cyclic-urea complexes of Ph₃SnX in Table 1. However, for Ph₃SnCl \cdot DMPU the multiplet separation increased from 0.26 to 0.34 and 0.44 ppm as 0.01 and 0.03 ml of DMPU was added to the solution in the NMR tube, indicating that the concentration of the 5-coordinate species in the equilibrium Ph₃SnCl + DMPU \Rightarrow Ph₃SnCl \cdot DMPU had increased. The neutral triphenyltin halide complexes examined by Sau et al. [14,15] were assumed to remain pentacoordinate in solution with no obvious dissociation in solution. This assumption is not true in at least two of the complexes they studied, for Ph₃SnCl \cdot HMPA [5] and Ph₃PbCl \cdot HMPA [6] have been shown to dissociate in benzene solution. In the more polar solvents used by Sau et al. [14,15] dissociation should be even greater.

¹¹⁹Sn and ²⁰⁷Pb NMR spectra

In their report of the ¹¹⁹Sn NMR spectra of a number of organotin compounds, Holeček et al. [16] found that the ¹¹⁹Sn chemical shifts of 5-coordinate complexes are upfield from those of tetracovalent complexes. Similarly, Cox [18] has shown that ²⁰⁷Pb chemical shifts of tetracovalent compounds, such as Me₃PbCl in CHCl₃, increase dramatically when placed in highly coordinating solvents such as HMPA. Thus, there appears to be a correlation between chemical shifts and coordination number in these systems. Both ¹¹⁹Sn and ²⁰⁷Pb chemical shifts obtained in this work (Table 5) were to high field of the reference compound. In spite of the fast exchange occurring between free and complexed species in solution, the large ¹¹⁹Sn and ²⁰⁷Pb chemical shifts confirm the presence of complexes in solution. In both tin and lead series trends in Δ values are in the orders: DMPU > DMEU and Cl > Br > I, suggesting that these might be the orders of adduct stability. Interestingly, two sets of adducts, Ph₃SnX · DMEU (X = Cl, Br) and Ph₃SnX · DMPU (X = Cl, Br), have

Compound	$\delta(^{119}\mathrm{Sn})$	$\Delta\delta(^{119}\mathrm{Sn})^{b}$	δ(²⁰⁷ Pb)	$\Delta\delta(^{207}\text{Pb})^{b}$
Ph ₃ MCl	-48 (-44.7 ^c)		$-42^{d} (-38^{e})$	
Ph ₃ MBr	$-62 (-59.8^{\circ})$		$-74^{d}(-68^{e})$	
Ph ₃ MI	-113 (-112.8 °)		-195 d(-202 e)	
3Ph ₃ PbCl · 2DMEU			-144^{d}	102
Ph ₃ SnCl·DMEU	- 85	37		
Ph ₃ MBr · DMEU	- 84	22	-123	49
Ph ₃ MI · DMEU	- 118	5 ⁸	- 196	1
2Ph ₃ PbCl·DMPU			-124^{d}	82
Ph ₃ SnCl·DMPU	$-108(-103^{f})$	60		
Ph ₃ MBr · DMPU	- 105	43	- 141	67
Ph ₃ MI · DMPU	-128 (-123 ^f)	15 ^g	- 201	6

TABLE 5 ¹¹⁹Sn AND ²⁰⁷Pb CHEMICAL SHIFTS ^a

^a Measured in ppm for 0.25 *M* solutions in CH_2Cl_2 , unless otherwise indicated, at 20°C relative to Me_4Sn and Et_4Pb , respectively. ^b Differences in ppm between free and complexed species. ^c Ref. 16; measured in CDCl₃. ^d Measured for saturated solutions (<0.25 *M*). ^e Ref. 17; measured for saturated solutions in CDCl₃ relative to MePb₄, but corrected to Et_4Pb . ^f Values for saturated solution in C_6H_6 . ^g Coupling constants ¹J(¹¹⁹Sn-¹³C) were 574.8 and 578.3 Hz for Ph₃SnI·DMEU and Ph₃SnI·DMPU, respectively, compared with 567.6 Hz for Ph₃SnI [16].

TABLE 6

Complex	$\frac{K}{(\text{mol } 1^{-1})}$	$\frac{\Delta H^{\circ}}{(\text{kJ mol}^{-1})}$	ΔG° (kJ mol ⁻¹)	$\frac{\Delta S^{\circ}}{(J \text{ K}^{-1} \text{ mol}^{-1})}$
Ph ₃ SnCl·DMPU ^a	0.32 ± 0.01	36.5±0.5	2.8 ± 0.1	115±2
Ph ₃ SnBr · DMPU "	0.53 ± 0.02	40 ± 1	1.5 ± 0.05	130 ± 3
Ph ₃ SnCl·py ^b	1.1	41	0.3	134

THERMODYNAMIC DATA FOR DISSOCIATION OF TRIPHENYLTIN HALIDE COMPLEXES

^a Measurements in CH₂Cl₂ solution. ^b Measurements in benzene solution [20].

similar ¹¹⁹Sn chemical shifts, whereas the corresponding iodide compounds have different values. This might be due to an ionization: $Ph_3SnX \cdot L \rightleftharpoons Ph_3SnL^+ + X^-$, which is less likely for X = Cl and Br than for X = I because of the weaker Sn-I bond. Alternatively, the dissociation: $Ph_3SnX \cdot L \rightleftharpoons Ph_3SnX + L$ is more favourable with the least electronegative iodine atom which would make Ph_3SnI the weakest acceptor. That dissociation that is almost complete in Ph_3SnI and Ph_3PbI systems is supported by the fact that $\delta(^{119}Sn)$ of $Ph_3SnI \cdot DMEU$ in solution is almost the same as that of Ph_3SnI in solution and values of $\delta(^{207}Pb)$ are little different in Ph_3PbI and its DMEU and DMPU adducts in solution.

The degrees of dissociation of Ph₃SnCl · DMPU and Ph₃SnBr · DMPU were estimated from δ ⁽¹¹⁹Sn) values of Ph₃SnCl (-225 ppm) and Ph₃SnBr (-230 ppm) in pure DMPU and the corresponding values for Ph₃SnCl · DMPU and Ph₃SnBr · DMPU in CH₂Cl₂ solution, assuming that the species in pure DMPU were only the 1:1 adducts. Although this is the usual assumption [16,18], the possibility that dissociation occurs in pure DMPU and fast exchange results cannot be excluded. The observed chemical shift (δ_{obs}) of Ph₃SnX · DMPU as a 0.25 M solution in CH_2Cl_2 is given by [19]: $\delta_{obs} = \nu_A P_A + \nu_B P_B$, where $\nu_A =$ chemical shift of Ph₃SnX in CH_2Cl_2 ; ν_B = chemical shift of $Ph_3SnX \cdot DMPU$ as Ph_3SnX in neat DMPU; $P_A = \text{mole fraction of Ph}_3\text{SnX}$, and $P_B = \text{mole fraction of Ph}_3\text{SnX} \cdot \text{DMPU}$. Dissociations were calculated to be 66% for a 0.25 M solution of $Ph_3SnCl \cdot DMPU$ at 293 K, and 74% for Ph₃SnBr · DMPU. The corresponding dissociation constants are $K = 0.32 \pm 0.01 \text{ mol } 1^{-1}$ at 293 K, for Ph₃SnCl · DMPU and $0.53 \pm 0.02 \text{ mol } 1^{-1}$ for Ph₃SnBr · DMPU. Thermodynamic parameters for these dissociations were obtained by recording $\delta(^{119}\text{Sn})$ in the temperature range of 20 to -50°C and doing regression analysis of $\ln K$ against 1/T plots. The results (regression coefficient = 0.999) are shown in Table 6, together with corresponding data for $Ph_3SnCl \cdot py$ obtained by Farhangi and Graddon [20] using a calorimetric method. Despite pyridine being a N-donor ligand, the values are similar in the three complexes.

Acknowledgement

We are grateful for the financial support of the Natural Sciences and Engineering Research Council of Canada and of le Gouvernement du Québec, Ministère de l'Education. We thank Drs. F. Sauriol and I. Wharf for helpful discussions.

References

1 T. Mukhopadhyay and D. Seebach, Helv. Chim. Acta, 65 (1982) 385.

2 V. Gutmann and R. Schmid, Coord. Chem. Rev., 12 (1974) 207

- 3 W.R. Gilkerson and M.D. Jackson, J. Amer. Chem. Soc., 101 (1979) 4096.
- 4 R.J.P. Corriu, G. Dabosi and M. Martineau, J. Organomet. Chem., 186 (1980) 25.
- 5 I. Wharf, M. Onyszchuk, D.M. Tallett and J.M. Miller, Can. J. Spectr., 24(5) (1979) 123.
- 6 I. Wharf, M. Onyszchuk, J.M. Miller and T.R.B. Jones, J. Organomet. Chem., 190 (1980) 417.
- 7 R.J. Berni, R.R. Benerito, W.M. Ayres and H.B. Jonassen, J. Inorg. Nucl. Chem., 25 (1963) 807.
- 8 R.J. Berni, R.R. Benerito and H.B. Jonassen, J. Inorg. Nucl. Chem., 31 (1969) 1023.
- 9 T.N. Srivastava, B. Bajpai and P.C. Srivastava, Ind. J. Chem., 16A (1978) 164.
- 10 I. Wharf, R. Cuenca and M. Onyszchuk, Can. J. Spectr., 29 (1984) 31.
- 11 D.H. Whiffen, J. Chem. Soc., (1954) 4441.
- 12 R.J.H. Clark, A.G. Davies and R.J. Puddephatt, Inorg. Chem., 8 (1969) 457.
- 13 I. Wharf, R. Cuenca, E. Besso and M. Onyszchuk, J. Organomet. Chem., 277 (1984) 245.
- 14 A.C. Sau, L.A. Carpino and R.R. Holmes, J. Organomet. Chem., 197 (1980) 181.
- 15 A.C. Sau and R.R. Holmes, J. Organomet. Chem., 217 (1981) 157.
- 16 J. Holeček, M. Nadvornik, K. Handlir and A. Lycka, J. Organomet. Chem., 241 (1983) 177.
- 17 T.N. Mitchell, J. Gmehling and F. Huber, J. Chem. Soc., Dalton Trans., (1978) 960.
- 18 R.H. Cox, J. Magn. Res., 33 (1979) 61.
- 19 M.L. Martin, G.J. Martin and J.J. Delpuech in Practical NMR Spectroscopy, Heyden, London, 1980, chapter 8.
- 20 Y. Farhangi and D.P. Graddon, J. Organomet. Chem., 87 (1975) 67.