PREPARATION AND SPECTROSCOPIC STUDIES OF SOME CYCLIC UREA ADDUCTS OF TRIPHENYL-TIN AND -LEAD HALIDES *

CLARE T. AITKEN and MARIO ONYSZCHUK
Department of Chemistry, McGill University, Montreal, PQ, H3A 2K6 (Canada)
(Received March 13th, 1985)

Summary

1,3-Dimethyl-2-imidazolidinone (dimethylethylene urea, DMEU) and 1,3-di-methyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (dimethylpropylene urea, DMPU) adducts of the type $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{L}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I$), \mathrm{Ph}_{3} \mathrm{PbX} \cdot \mathrm{L}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$, $3 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}$ and $2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot$ DMPU have been prepared and characterized. Assignments are made for $\nu(\mathrm{CO})$ and $\nu(\mathrm{CN})$ frequencies in the IR, and for skeletal frequencies observed in both the IR and Raman spectra in the range 400 to 100 cm^{-1}. Infrared measurements show that the adducts are bound through the carbonyl oxygen, and are highly dissociated in dichloromethane solution. ${ }^{1} \mathrm{H}$ and ${ }^{119} \mathrm{Sn}$ or ${ }^{207} \mathrm{~Pb}$ NMR measurements reveal that ligand exchange, fast on the NMR time scale, occurs in solution. Coordination of the ligand causes a large upfield shift in the ${ }^{119} \mathrm{Sn}$ or ${ }^{207} \mathrm{~Pb}$ resonances, but $\mathrm{Ph}_{3} \mathrm{MI} \cdot \mathrm{L}$ have shifts similar to those for the parent iodides, indicating almost complete dissociation. Thermodynamic parameters are reported for the dissociation of $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{DMPU}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Introduction

Recently, it has been proposed that the carcinogenic hexamethylphosphoramide (HMPA) be replaced by the cyclic urea DMPU for reactions requiring a dipolar aprotic solvent [1]. HMPA is a powerful ligand [2-4] and a number of adducts of the type $\mathrm{Ph}_{3} \mathrm{MX} \cdot \mathrm{HMPA}$, where $\mathrm{M}=\mathrm{Sn}$ or Ph , and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I , have been prepared and studied spectroscopically [5,6]. It was of particular interest, therefore, to attempt the preparation of a series of analogous adducts using DMPU and the

[^0]similar DMEU as ligands, illustrated below, and to study them by vibrational and NMR spectroscopy.

DMEU

DMPU

Little has been reported in the literature on organometallic compounds of Group IV elements with either acyclic or cyclic ureas, despite the fact that these molecules offer both nitrogen and oxygen atoms for coordination. To date, no cyclic urea complexes of phenyltin or lead halides have been reported, perhaps due to the cyclic ureas not being commercially available until recently. Studies of 2 -imidozolidinone (ethylene urea) and $2(1 H)$-tetrahydropyrimidinone (propylene urea) as ligands in a variety of non-Group IV complexes, show that these ligands coordinate via the oxygen atom $[7,8]$. Shifts in the $\boldsymbol{\nu (C O)}$ frequency of the ligands tetramethylurea and urea upon coordination to methyl- and phenyl-tin halides also indicate that it is the oxygen atom which coordinates to the metal [9].

Experimental

Deuterated solvents were used as received from Merck, Sharp and Dohme. Non-deuterated solvents were purified by standard methods. The compounds $\mathrm{Ph}_{3} \mathrm{SnCl}$ and $\mathrm{Ph}_{3} \mathrm{PbCl}$ were used as received from Alfa; $\mathrm{Ph}_{3} \mathrm{PbBr}$ and $\mathrm{Ph}_{3} \mathrm{PbI}$ were supplied by R . Cuenca of our laboratory, and were used as obtained. $\mathrm{Ph}_{3} \mathrm{SnBr}$ was prepared by the reaction of $\mathrm{Ph}_{3} \mathrm{SnCl}$ with excess NaBr in methanol. $\mathrm{Ph}_{3} \mathrm{SnI}$ was prepared by the reaction of $\mathrm{Ph}_{3} \mathrm{SnCl}$ with excess NaI in acetone.

The adducts were prepared in the same way for $\mathrm{L}=$ DMEU and DMPU. The parent compound, $\mathrm{Ph}_{3} \mathrm{MX}(2 \mathrm{~g})$ was suspended in toluene (5 ml) together with the appropriate liquid ligand (3 ml , excess). Upon addition of the ligand, the parent compound dissolved. The adducts tended to crystallize upon cooling at $0^{\circ} \mathrm{C}$ for 1 h . In some cases a few drops of pentane were added to initiate crystallization. All the complexes were recrystallized from hot toluene and dried in air. The DMEU adducts appeared to be 'wet' and so were pumped in a vacuum overnight at room temperature. Elemental analyses for C, H and N were determined in duplicate by Guelph Chemical Laboratories, Guelph, Ontario. Melting points were measured on a Thomas Hoover melting point apparatus and are uncorrected.

Raman spectra of powders in capillary tubes and both mid- and far-IR spectra of samples as Nujol mulls were measured as described elsewhere [10]. Solution IR were recorded on a Perkin-Elmer 297 instrument using NaCl cells. All frequencies are accurate to $\pm 1 \mathrm{~cm}^{-1}$ for sharp peaks.

Nuclear magnetic resonance spectra were recorded on a 200 MHz Varian XL-200 FT spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 200 MHz as $5 \% \mathrm{w} / \mathrm{v}$ solutions in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with TMS as internal standard. The chemical shifts were measured with digital resolution of 0.25 Hz . The FIDs were collected into 16 K data points using a spectral width of 2000 Hz . Chemical shifts were accurate to within $\pm 0.005 \mathrm{ppm}$.
${ }^{119} \mathrm{Sn}$ and ${ }^{207} \mathrm{~Pb}$ NMR spectra were obtained at natural abundance for 0.25 M solutions in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or as saturated solutions, and were measured at 74.6 MHz (digital resolution 3.1 Hz) and 41.8 MHz (digital resolution 3.3 Hz), respectively, using as external references $\mathrm{Me}_{4} \mathrm{Sn}$ or $\mathrm{Et}_{4} \mathrm{~Pb}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(50 \%)$, the latter providing the external lock signal. Negative chemical shift values indicate upfield shifts from the references. The FIDs were collected into 32 K data points with a spectral width of $50,000 \mathrm{~Hz}$. In the ${ }^{207} \mathrm{~Pb}$ spectra, complete proton noise decoupling was employed. The decoupler was 'gated' in the case of the ${ }^{119} \mathrm{Sn}$ spectra with a delay of 5 s . This led to much longer spectral collection times for this nucleus. All spectra were measured at room temperature ($20 \pm 3^{\circ} \mathrm{C}$).

Results and discussion

Analytical data

The analytical data for all the adducts prepared are summarized in Table 1. These adducts are air-stable, crystalline solids which are soluble in dichloromethane, but insoluble in pentane. Ten of the twelve complexes made, namely 1 to 3,5 to 9 , and 11 to 12 , have analyses corresponding to $1: 1$ molecular adducts, $\mathrm{R}_{3} \mathrm{MX} \cdot \mathrm{L}$, but complexes 4 analyzed as a $3: 2$ adduct, while complex 10 is a $2: 1$ adduct. Nine of the twelve adducts melted sharply. The complexes 4,6 , and 10 decomposed when heated in the range 96 to $123^{\circ} \mathrm{C}$.

Vibrational spectra

Infrared $\nu(\mathrm{CO})$ and $\nu(\mathrm{CN})$ group frequencies for adducts 1 to 12 in the solid state (Table 1) indicate a decrease in $\nu(\mathrm{CO})$ and, in most cases, a small increase in $\nu(\mathrm{CN})$ upon coordination, consistent with coordination being through the carbonyl oxygen rather than through ring nitrogen atoms. Moreover, solution spectra gave $\nu(\mathrm{CO})_{\text {rree }}$ peaks more intense than $\nu(\mathrm{CO})_{\text {bound }}$ (Table 1), showing that, at least qualitatively, adducts $\mathbf{1}$ to $\mathbf{1 2}$ are highly dissociated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Skeletal frequencies ($400-100 \mathrm{~cm}^{-1}$) in both the IR and the Raman are given in Tables 2 and 3, with assignments based on those for the parent phenyllead halides reported by Clark et al. [12], and by Wharf et al. [5,6] for the analogous HMPA adducts. The presence of distinct peaks for $\nu_{a s}\left(\mathrm{SnPh}_{3}\right)$ and $\nu_{s}\left(\mathrm{SnPh}_{3}\right)$ modes in IR and Raman spectra, respectively, suggests a symmetry lower than $C_{3 v}$, probably due to asymmetry of the ligand. Lead-oxygen stretching bands have been assigned in the region $195-206 \mathrm{~cm}^{-1}$, slightly lower than in the corresponding tin complexes whose tin-oxygen stretching bands ranged from 225 to $238 \mathrm{~cm}^{-1}$. These ranges are similar to those obtained for the analogous HMPA complexes [4,5]. Values of $\boldsymbol{\nu}(\mathbf{M}-\mathrm{X})$ are lower than those found in the parent, monomeric and four-coordinate $\mathrm{Ph}_{3} \mathrm{MX}$ [5,12]; they are consistent with a five-coordinate structure, like that in HMPA adducts [6], $\mathrm{Ph}_{n} \mathrm{SnX}_{3-n}(n=2,3)$ [10], and $\mathrm{Ph}_{3} \mathrm{PbX}_{2}{ }^{-}(\mathrm{X}=\mathrm{I}, \mathrm{Br})$ [13], probably with $\mathrm{M}-\mathrm{X}$ bonds axial.

The formulation of complexes $\mathbf{4}$ and 10 as $3: 2$ and $2: 1$ adducts, respectively, as determined by elemental analysis, implies the presence of bridging chlorines in molecular, ionic, or polymeric structures. Vibrational data do not allow us to distinguish among the possible structures; single crystal X-ray data are necessary. Bands in the infrared due to bridging chlorines are lower in frequency than terminal ones, but the presence of internal ligand vibrations below $200 \mathrm{~cm}^{-1}$ prevented the
TABLE 1
ANALYTICAL AND INFRARED DATA

Compound	Colour	Yield ${ }^{a}$ (\%)	M.p.$\left({ }^{\circ} \dot{\mathrm{C}}\right)$	Analysis (Found (calcd.) (\%))			$\overline{\Delta \nu(\mathrm{CO})^{c}}$	$\Delta \nu(\mathrm{CN})^{d}$	$\nu(\mathrm{CO})^{e}$		$\nu(\mathrm{CN})^{f}$
				C	H	N			free	bound	
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMEU (1)	white	71	113	$\begin{gathered} 55.42 \\ (55.20) \end{gathered}$	$\begin{gathered} 5.18 \\ (5.04) \end{gathered}$	$\begin{gathered} \hline 5.80 \\ (5.60) \end{gathered}$	-63	+3	1694	1656	8
$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMEU (2)	cream	47	95-97	$\begin{gathered} 50.74 \\ (50.70) \end{gathered}$	$\begin{gathered} 4.58 \\ (4.63) \end{gathered}$	$\begin{gathered} 5.07 \\ (5.15) \end{gathered}$	-62	+1	1694	1656	8
$\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{DMEU}$ (3)	yellow	59	106-108	$\begin{gathered} 46.80 \\ (46.70) \end{gathered}$	$\begin{gathered} 4.27 \\ (4.26) \end{gathered}$	$\begin{gathered} 4.76 \\ (4.74) \end{gathered}$	-60	+1	1685	1658	8
$3 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}$ (4)	white	80	$121-123{ }^{\text {b }}$	$\begin{gathered} 46.87 \\ (46.61) \end{gathered}$	$\begin{gathered} 4.33 \\ (3.97) \end{gathered}$	$\begin{gathered} 3.71 \\ (3.40) \end{gathered}$	- 50	$+5$	1696	1666	$\%$
$\mathrm{Ph}_{3} \mathrm{PbBr} \cdot \mathrm{DMEU}$ (5)	white	54	108-110	$\begin{gathered} 43.63 \\ (43.67) \end{gathered}$	$\begin{gathered} 4.15 \\ (3.99) \end{gathered}$	$\begin{gathered} 4.44 \\ (4.43) \end{gathered}$	-41	$+3$	1691	1661	8
$\mathrm{Ph}_{3} \mathrm{PbI} \cdot$ DMEU (6)	pale yellow	63	$96^{\text {b }}$	$\begin{gathered} 40.60 \\ (40.68) \end{gathered}$	$\begin{gathered} 3.78 \\ (3.71) \end{gathered}$	$\begin{gathered} 4.03 \\ (4.12) \end{gathered}$	-44	+5	1691	1658	8
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU (7)	white	45	121-122	$\begin{gathered} 56.03 \\ (56.12) \end{gathered}$	$\begin{gathered} 5.41 \\ (5.30) \end{gathered}$	$\begin{gathered} 5.62 \\ (5.45) \end{gathered}$	-63	+8	1629	1581	1316
$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMPU (8)	pale yellow	76	137-139	$\begin{gathered} 51.63 \\ (51.65) \end{gathered}$	$\begin{gathered} 4.90 \\ (4.88) \end{gathered}$	$\begin{gathered} 5.09 \\ (5.02) \end{gathered}$	-65	+5	1631	1580	1318
$\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{DMPU}$ (9)	bright yellow	82	146-148	$\begin{gathered} 47.55 \\ (47.64) \end{gathered}$	$\begin{gathered} 4.46 \\ (4.50) \end{gathered}$	$\begin{gathered} 4.61 \\ (4.63) \end{gathered}$	-62	$+5$	1628	1579	1310
$2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot$ DMPU (10)	white	67	$123{ }^{\text {b }}$	$\begin{gathered} 46.70 \\ (46.89) \end{gathered}$	$\begin{gathered} 3.52 \\ (3.94) \end{gathered}$	$\begin{gathered} 2.77 \\ (2.60) \end{gathered}$	-54	+6	1630	1594	1310
$\mathrm{Ph}_{3} \mathrm{PbBr} \cdot \mathrm{DMPU}$ (11)	white	56	126	$\begin{gathered} 44.39 \\ (44.62) \end{gathered}$	$\begin{gathered} 4.25 \\ (4.21) \end{gathered}$	$\begin{gathered} 4.39 \\ (4.34) \end{gathered}$	-58	+1	1631	1596	1310
$\mathrm{Ph}_{3} \mathrm{PbI} \cdot \mathrm{DMPU}$ (12)	cream	45	136-137	$\begin{gathered} 41.57 \\ (41.56) \end{gathered}$	$\begin{gathered} 3.96 \\ (3.92) \end{gathered}$	$\begin{gathered} 4.07 \\ (4.04) \end{gathered}$	-48	+3	1636	1598	1310

${ }^{a}$ After recrystallization from toluene. ${ }^{b}$ Decomposition temperatures. ${ }^{c}$ For complexes as Nujol mulls, $\Delta \nu(\mathrm{CO})=\nu(\mathrm{CO})_{\text {bound }}-\nu(\mathrm{CO})_{\text {free }}{ }^{d} \Delta \nu(\mathrm{CN})=\nu(\mathrm{CN})_{\text {bound }}-$ $\nu(\mathrm{CN})_{\text {free }}$, where C is the carbonyl for complexes as Nujol mulls. ${ }^{e}$ For complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution; for DMEU and DMPU in $\mathrm{CH}_{2} \mathrm{Cl} \boldsymbol{D}_{2} \nu(\mathrm{CO})$ are 1696 and 1631 cm^{-1}, respectively. ${ }^{f}$ For complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution; $\boldsymbol{\nu}(\mathrm{CN})$ are 1287 and $1318 \mathrm{~cm}^{-1}$ for DMEU and DMPU, respectively. ${ }^{\text {g }}$ Peak present as a diffuse, broad band.
TABLE 2
SKELETAL VIBRATIONS (cm^{-1}) FOR $\mathrm{Ph}_{3} \mathrm{SnX}$-L ADDUCTS ${ }^{a}$

Assignment	$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMEU		$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMEU		$\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{MDEU}$		$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{DMPU}$		$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot \mathrm{DMPU}$		$\xrightarrow{\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{DMPU}}$	
	IR	R										
$\begin{gathered} \overline{\nu_{a s}(\mathrm{Sn}-\mathrm{Pb})} \\ (t)^{b} \end{gathered}$	274s		274s	274w	276s		274s ${ }^{\text {c }}$		278s	275w	276s	274w
$\nu(\mathrm{Sn}-\mathrm{Cl})$	267sh	264m					$274 s^{\text {c }}$	267m				
$\nu(\mathrm{Sn}-\mathrm{O})$	$\begin{aligned} & 238 \mathrm{~m} \\ & \text { 230sh } \end{aligned}$	237w	$\begin{aligned} & \text { 233sh } \\ & 228 \mathrm{~m} \end{aligned}$	232w	232s	228w	236m	233w	235s	229w	230s	225sh
$\mathbf{u}^{\text {b }}$	210 m	218vs	214w	215vs	213sh	$212 \mathrm{~m}^{\text {c }}$	212m	217vs	206w	211 vs	199s	213 m
$\begin{gathered} \nu_{s}(\mathrm{Sn}-\mathrm{Ph}) \\ \left(t_{1}\right)^{b} \end{gathered}$	203w	205s	204w	205s	208w	212m ${ }^{\text {c }}$	202m	202s	190sh	d	193sh	d
$\nu(\mathrm{Sn}-\mathrm{Br})$			172s	171m					172s	167vs		
$\nu(\mathrm{Sn}-\mathrm{I})$					134s	132vs					131s	127vs
$\mathrm{x}^{\text {b }}$	195sh		$\begin{array}{r} 80 w \\ 155 w \end{array}$			152m		193sh		158sh		155w
$\delta(\mathrm{Sn}-\mathrm{Cl})$	153m							146m				
Deformations										105sh		101sh
$\boldsymbol{\delta}(\mathrm{Sn}-\mathrm{Br})$										71sh		

[^1] under u.
TABLE 3
SKELETAL VIBRATIONS $\left(\mathrm{cm}^{-1}\right)$ FOR $\mathrm{Ph}_{3} \mathrm{PbX} \cdot \mathrm{L}$ ADDUCTS ${ }^{\text {a }}$

Assignment	$\underline{3 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}}$		$\underline{\mathrm{Ph}_{3} \mathrm{PbBr} \cdot \mathrm{DMEU}}$		$\underline{\mathrm{Ph}_{3} \mathrm{PbI} \cdot \mathrm{DMEU}}$		$\underline{2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot \text { DMPU }}$		$\xrightarrow{\mathrm{Ph}_{3} \mathrm{PbBr} \cdot \text { DMPU }}$		$\underline{\mathrm{Ph}_{3} \mathrm{PbI} \cdot \text { DMPU }}$	
	IR	R										
$\begin{gathered} \nu_{a s}(\mathrm{~Pb}-\mathrm{Ph}) \\ (t)^{b} \end{gathered}$	$\begin{aligned} & \text { 235sh } \\ & 229 \mathrm{~s} \end{aligned}$	234w	228s	229w	227s		230s	234w	229s	229w		$\begin{aligned} & 230 \text { sh } \\ & 220 \mathrm{~s} \end{aligned}$
$\nu(\mathrm{Pb}-\mathrm{Cl})$	222sh	218w					212m	220w				
$\nu(\mathrm{Pb}-\mathrm{O})$	203m		203m		201m		205m		206m		195w	
$\mathbf{u}^{\text {b }}$	182m	$\begin{aligned} & 186 w \\ & 173 w \end{aligned}$		179sh			184m				172w	170sh
$\begin{aligned} & \nu_{s}(\mathrm{~Pb}-\mathrm{Ph}) \\ & \left(t_{1}\right)^{b} \end{aligned}$	206sh	198vs		194vs	206w	197m		200vs	199m	201vs	207m	202vs
$\nu(\mathrm{Pb}-\mathrm{Br})$			152s	151w					149s	151m		
$\boldsymbol{\nu}(\mathrm{Pb}-\mathrm{I})$					122s	121vs					119s	117vs
$\mathrm{x}^{\text {b }}$		151w						155w				155w
		101sh		94sh								
Deformations		69sh		62sh		150w		108sh				96sh
		55sh		42sh		60sh						58sh

${ }^{a}$. As Nujol mulls between polyethylene plates. ${ }^{b}$ Whiffen's notation [11].
assignment of any bridging $\mathrm{Pb}-\mathrm{Cl}$ stretching frequencies. The IR spectra of both $3 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}$ and $2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot$ DMPU did, however, show a lower baseline relative to that observed in the bromide and iodide complexes, below approximately $200 \mathrm{~cm}^{-1}$. This suggests the presence of a superimposed peak (or peaks) in the bridging chlorine region.

${ }^{1} H$ NMR spectra

Only single ${ }^{1} \mathrm{H}$ NMR peaks were observed for ligand protons in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution spectra of the complexes (Table 4), suggesting that rapid exchange occurs between free and complexed species on an NMR time scale. In fact, proton chemical shifts $\delta\left(\mathrm{CH}_{3}\right)$ and $\delta\left(\mathrm{CH}_{2}\right)$ were either unchanged or only slightly shifted from those of the free cyclic ureas in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. These observations strongly support the conclusion, previously made on the basis of infrared data, that complexes are highly dissociated in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.

Aromatic proton resonances appeared as two, well separated sets of multiplets; the one at low field arising from ortho protons, and other at high field from the meta and para protons. This pattern has been shown by Sau et al. [14,15] to be characteristic of phenyl-substituted pentacoordinated compounds of Main Group elements, when the separation between the two multiplets is greater than in those of related tetracovalent compounds. The multiplet separation for $\mathrm{Ph}_{3} \mathrm{SnCl}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

TABLE 4
${ }^{1} \mathrm{H}$ NMR DATA FOR COMPLEXES $\mathrm{Ph}_{3} \mathrm{MX} \cdot \mathrm{L}^{a}$ WHERE $\mathrm{M}=\mathrm{Sn}$ AND $\mathrm{Pb}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ AND I, AND $L=$ DMEU AND DMPU

Complex		$\delta\left(\mathrm{CH}_{3}\right)$	$\delta\left(\mathrm{CH}_{2}\right)$	${ }^{3} \mathrm{~J}(\mathrm{H}-\mathrm{H})$	$\delta\left(\right.$ ortho) ${ }^{\text {b }}$	$\delta(\text { meta } / \text { para })^{\text {c }}$	Δ^{d}	${ }^{3} \mathrm{~J}\left({ }^{207} \mathrm{~Pb}-\mathrm{H}\right)$
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{DMEU}$	(1)	2.67	3.20		7.69	7.49	0.20	
$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMEU	(2)	2.71	3.22		7.66	7.47	0.19	
$\mathrm{Ph}_{3} \mathrm{SnI} \cdot$ DMEU	(3)	2.72	3.22		7.66	7.46	0.20	
$3 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}$	(4)	2.53	3.14		7.75	7.44	0.31	128
$\mathrm{Ph}_{3} \mathrm{PbBr} \cdot$ DMEU	(5)	2.63	3.18		7.75	7.47	0.28	112
$\mathrm{Ph}_{3} \mathrm{PbI} \cdot \mathrm{DMEU}$	(6)	2.69	3.21		7.73	7.46	0.27	104
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{DMPU}$	(7)	2.77	$\begin{aligned} & 1.89^{e} \\ & 3.16^{f} \end{aligned}$	6	7.71	7.45	0.26	
$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot \mathrm{DMPU}$	(8)	2.81	$\begin{aligned} & 1.91^{\circ} \\ & 3.19 \mathrm{f} \end{aligned}$	6	7.68	7.47	0.21	
$\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{DMPU}$	(9)	2.82	$\begin{aligned} & 1.92^{e} \\ & 3.19^{f} \end{aligned}$	6	7.64	7.45	0.19	
$2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot \mathrm{DMPU}$	(10)	2.67	$\begin{aligned} & 1.82^{\circ} \\ & 3.11^{f} \end{aligned}$	6	7.76	7.51	0.25	111
$\mathrm{Ph}_{3} \mathbf{P h B r} \cdot \mathrm{DMPU}$	(11)	2.73	$\begin{aligned} & 1.88^{e} \\ & 3.14^{f} \end{aligned}$	6	7.78	7.53	0.25	111
$\mathrm{Ph}_{3} \mathbf{P b I} \cdot \mathrm{DMPU}$	(12)	2.81	$\begin{aligned} & 1.92^{d} \\ & 3.18^{f} \end{aligned}$	6	7.72	7.47	0.25	104

[^2]was 0.20 ppm , almost the same as that observed in five of the six cyclic-urea complexes of $\mathrm{Ph}_{3} \mathrm{SnX}$ in Table 1. However, for $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU the multiplet separation increased from 0.26 to 0.34 and 0.44 ppm as 0.01 and 0.03 ml of DMPU was added to the solution in the NMR tube, indicating that the concentration of the 5 -coordinate species in the equilibrium $\mathrm{Ph}_{3} \mathrm{SnCl}+\mathrm{DMPU} \rightleftharpoons \mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU had increased. The neutral triphenyltin halide complexes examined by Sau et al. [14,15] were assumed to remain pentacoordinate in solution with no obvious dissociation in solution. This assumption is not true in at least two of the complexes they studied, for $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{HMPA}$ [5] and $\mathrm{Ph}_{3} \mathrm{PbCl} \cdot \mathrm{HMPA}$ [6] have been shown to dissociate in benzene solution. In the more polar solvents used by Sau et al. [14,15] dissociation should be even greater.

${ }^{119}$ Sn and ${ }^{207} \mathrm{~Pb}$ NMR spectra

In their report of the ${ }^{119} \mathrm{Sn}$ NMR spectra of a number of organotin compounds, Holeček et al. [16] found that the ${ }^{119} \mathrm{Sn}$ chemical shifts of 5 -coordinate complexes are upfield from those of tetracovalent complexes. Similarly, Cox [18] has shown that ${ }^{207} \mathrm{~Pb}$ chemical shifts of tetracovalent compounds, such as $\mathrm{Me}_{3} \mathrm{PbCl}$ in CHCl_{3}, increase dramatically when placed in highly coordinating solvents such as HMPA. Thus, there appears to be a correlation between chemical shifts and coordination number in these systems. Both ${ }^{119} \mathrm{Sn}$ and ${ }^{207} \mathrm{~Pb}$ chemical shifts obtained in this work (Table 5) were to high field of the reference compound. In spite of the fast exchange occurring between free and complexed species in solution, the large ${ }^{119} \mathrm{Sn}$ and ${ }^{207} \mathrm{~Pb}$ chemical shifts confirm the presence of complexes in solution. In both tin and lead series trends in Δ values are in the orders: $\mathrm{DMPU}>\mathrm{DMEU}$ and $\mathrm{Cl}>\mathrm{Br}>1$, suggesting that these might be the orders of adduct stability. Interestingly, two sets of adducts, $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{DMEU}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{DMPU}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$, have

TABLE 5
${ }^{119} \mathrm{Sn}$ AND ${ }^{207} \mathrm{~Pb}$ CHEMICAL SHIFTS ${ }^{a}$

Compound	$\delta\left({ }^{119} \mathrm{Sn}\right)$	$\Delta \delta\left({ }^{119} \mathrm{Sn}\right){ }^{\text {b }}$	$\delta\left({ }^{207} \mathrm{~Pb}\right)$	$\Delta \delta\left({ }^{207} \mathrm{~Pb}\right)^{b}$
$\mathrm{Ph}_{3} \mathrm{MCl}$	-48 (-44.7 ${ }^{\text {c }}$)		$-42^{d}\left(-38^{\circ}\right)$	
$\mathrm{Ph}_{3} \mathrm{MBr}$	-62 (-59.8 ${ }^{c}$)		$-74^{d}\left(-68^{e}\right)$	
$\mathrm{Ph}_{3} \mathrm{MI}$	$-113\left(-112.8{ }^{\text {c }}\right.$)		$-195{ }^{\text {d }}\left(-202^{\text {e }}\right.$)	
$3 \mathrm{Ph}{ }_{3} \mathrm{PbCl} \cdot 2 \mathrm{DMEU}$			$-144{ }^{\text {d }}$	102
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMEU	-85	37		
$\mathrm{Ph}_{3} \mathrm{MBr} \cdot \mathrm{DMEU}$	-84	22	-123	49
$\mathrm{Ph}_{3} \mathrm{MI} \cdot \mathrm{DMEU}$	-118	5^{8}	-196	1
$2 \mathrm{Ph}_{3} \mathrm{PbCl} \cdot$ DMPU			$-124{ }^{\text {d }}$	82
$\mathrm{Ph}_{3} \mathrm{SnCl}$-DMPU	$-108\left(-103{ }^{\prime}\right)$	60		
$\mathrm{Ph}_{3} \mathrm{MBr} \cdot$ DMPU	-105	43	-141	67
$\mathrm{Ph}_{3} \mathrm{MI} \cdot$ DMPU	$-128\left(-123{ }^{\prime}\right)$	$15^{\text {g }}$	-201	6

[^3]TABLE 6
THERMODYNAMIC DATA FOR DISSOCIATION OF TRIPHENYLTIN HALIDE COMPLEXES

Complex	K $\left(\mathrm{~mol} \mathrm{1}^{-1}\right)$	$\left.\begin{array}{l}\Delta H^{\circ} \\ (\mathrm{kJ} \mathrm{mol} \\ \\ \text { - }\end{array}\right)$	ΔG° $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	ΔS° $\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{DMPU}^{a}$	0.32 ± 0.01	36.5 ± 0.5	2.8 ± 0.1	115 ± 2
$\mathrm{Ph}_{3} \mathrm{SnBr} \cdot \mathrm{DMPU}^{a}$	0.53 ± 0.02	40 ± 1	1.5 ± 0.05	130 ± 3
$\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{py}^{b}$	1.1	41	0.3	134

${ }^{a}$ Measurements in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{b}$ Measurements in benzene solution [20].
similar ${ }^{119} \mathrm{Sn}$ chemical shifts, whereas the corresponding iodide compounds have different values. This might be due to an ionization: $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{L} \rightleftharpoons \mathrm{Ph}_{3} \mathrm{SnL}^{+}+\mathrm{X}^{-}$, which is less likely for $\mathrm{X}=\mathrm{Cl}$ and Br than for $\mathrm{X}=\mathrm{I}$ because of the weaker $\mathrm{Sn}-\mathrm{I}$ bond. Alternatively, the dissociation: $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{L} \rightleftharpoons \mathrm{Ph}_{3} \mathrm{SnX}+\mathrm{L}$ is more favourable with the least electronegative iodine atom which would make $\mathrm{Ph}_{3} \mathrm{SnI}$ the weakest acceptor. That dissociation that is almost complete in $\mathrm{Ph}_{3} \mathrm{SnI}$ and $\mathrm{Ph}_{3} \mathrm{PbI}$ systems is supported by the fact that $\delta\left({ }^{119} \mathrm{Sn}\right)$ of $\mathrm{Ph}_{3} \mathrm{SnI} \cdot \mathrm{DMEU}$ in solution is almost the same as that of $\mathrm{Ph}_{3} \mathrm{SnI}$ in solution and values of $\delta\left({ }^{207} \mathrm{~Pb}\right)$ are little different in $\mathrm{Ph}_{3} \mathrm{PbI}$ and its DMEU and DMPU adducts in solution.

The degrees of dissociation of $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot \mathrm{DMPU}$ and $\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMPU were estimated from $\delta\left({ }^{119} \mathrm{Sn}\right)$ values of $\mathrm{Ph}_{3} \mathrm{SnCl}(-225 \mathrm{ppm})$ and $\mathrm{Ph}_{3} \mathrm{SnBr}(-230 \mathrm{ppm})$ in pure DMPU and the corresponding values for $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU and $\mathrm{Ph}_{3} \mathrm{SnBr}$. DMPU in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, assuming that the species in pure DMPU were only the 1:1 adducts. Although this is the usual assumption [16,18], the possibility that dissociation occurs in pure DMPU and fast exchange results cannot be excluded. The observed chemical shift ($\delta_{\text {obs }}$) of $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{DMPU}$ as a 0.25 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is given by [19]: $\delta_{\text {obs }}=\nu_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}+\nu_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}$, where $\nu_{\mathrm{A}}=$ chemical shift of $\mathrm{Ph}_{3} \mathrm{SnX}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \nu_{\mathrm{B}}=$ chemical shift of $\mathrm{Ph}_{3} \mathrm{SnX} \cdot \mathrm{DMPU}$ as $\mathrm{Ph}_{3} \mathrm{SnX}$ in neat DMPU; $\mathrm{P}_{\mathrm{A}}=$ mole fraction of $\mathrm{Ph}_{3} \mathrm{SnX}$, and $\mathrm{P}_{\mathrm{B}}=$ mole fraction of $\mathrm{Ph}_{3} \mathrm{SnX} \cdot$ DMPU. Dissociations were calculated to be 66% for a 0.25 M solution of $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU at 293 K , and 74% for $\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMPU. The corresponding dissociation constants are $K=0.32 \pm 0.01 \mathrm{~mol} \mathrm{1}{ }^{-1}$ at 293 K , for $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ DMPU and $0.53 \pm 0.02 \mathrm{~mol}^{-1}$ for $\mathrm{Ph}_{3} \mathrm{SnBr} \cdot$ DMPU. Thermodynamic parameters for these dissociations were obtained by recording $\delta\left({ }^{119} \mathrm{Sn}\right)$ in the temperature range of 20 to $-50^{\circ} \mathrm{C}$ and doing regression analysis of $\ln K$ against $1 / T$ plots. The results (regression coefficient $=0.999$) are shown in Table 6, together with corresponding data for $\mathrm{Ph}_{3} \mathrm{SnCl} \cdot$ py obtained by Farhangi and Graddon [20] using a calorimetric method. Despite pyridine being a N-donor ligand, the values are similar in the three complexes.

Acknowledgement

We are grateful for the financial support of the Natural Sciences and Engineering Research Council of Canada and of le Gouvernement du Québec, Ministère de l'Education. We thank Drs. F. Sauriol and I. Wharf for helpful discussions.

References

1 T. Mukhopadhyay and D. Seebach, Helv. Chim. Acta, 65 (1982) 385.
2 V. Gutmann and R. Schmid, Coord. Chem. Rev., 12 (1974) 207

3 W.R. Gilkerson and M.D. Jackson, J. Amer. Chem. Soc., 101 (1979) 4096.
4 R.J.P. Corriu, G. Dabosi and M. Martineau, J. Organomet. Chem., 186 (1980) 25.
5 I. Wharf, M. Onyszchuk, D.M. Tallett and J.M. Miller, Can. J. Spectr., 24(5) (1979) 123.
6 I. Wharf, M. Onyszchuk, J.M. Miller and T.R.B. Jones, J. Organomet. Chem., 190 (1980) 417.
7 R.J. Berni, R.R. Benerito, W.M. Ayres and H.B. Jonassen, J. Inorg. Nucl. Chem., 25 (1963) 807.
8 R.J. Berni, R.R. Benerito and H.B. Jonassen, J. Inorg. Nucl. Chem., 31 (1969) 1023.
9 T.N. Srivastava, B. Bajpai and P.C. Srivastava, Ind. J. Chem., 16A (1978) 164.
10 I. Wharf, R. Cuenca and M. Onyszchuk, Can. J. Spectr., 29 (1984) 31.
11 D.H. Whiffen, J. Chem. Soc., (1954) 4441.
12 R.J.H. Clark, A.G. Davies and R.J. Puddephatt, Inorg. Chem., 8 (1969) 457.
13 I. Wharf, R. Cuenca, E. Besso and M. Onyszchuk, J. Organomet. Chem., 277 (1984) 245.
14 A.C. Sau, L.A. Carpino and R.R. Holmes, J. Organomet. Chem., 197 (1980) 181.
15 A.C. Sau and R.R. Holmes, J. Organomet. Chem., 217 (1981) 157.
16 J. Holexek, M. Nadvornik, K. Handlir and A. Lycka, J. Organomet. Chem., 241 (1983) 177.
17 T.N. Mitchell, J. Gmehling and F. Huber, J. Chem. Soc., Dalton Trans., (1978) 960.
18 R.H. Cox, J. Magn. Res., 33 (1979) 61.
19 M.L. Martin, G.J. Martin and J.J. Delpuech in Practical NMR Spectroscopy, Heyden, London, 1980, chapter 8.
20 Y. Farhangi and D.P. Graddon, J. Organomet. Chem., 87 (1975) 67.

[^0]: * Presented by C.T.A. at the Fourth International Conference on the Organometallic and Coordination Chemistry of Germanium, Tin and Lead, Montreal, Canada, 1983, paper H-6.

[^1]: ${ }^{a}$ As Nujol mulls between polyethylene plates; vs = very strong, $s=$ strong, $m=$ medium, $w=$ weak, $s h=$ shoulder. ${ }^{b}$ Whiffen's notation [11]. ${ }^{c}$ Superimposed. ${ }^{d}$ Hidden

[^2]: ${ }^{a}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Chemical shifts measured in ppm relative to internal TMS accurate to ± 0.005 ppm. Coupling constants measured in Hz . Digital resolution $0.25 \mathrm{~Hz} .^{b}$ Ortho protons of phenyl rings.
 ${ }^{c}$ Meta / para protons of phenyl rings. ${ }^{d} \Delta=\delta$ (ortho multiplet) $-\delta($ meta / para multiplet) in ppm.
 ${ }^{e}$ Middle CH_{2}-quintet. ${ }^{f} \mathrm{CH}_{2}$'s bonded to N .

[^3]: ${ }^{a}$ Measured in ppm for 0.25 M solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, unless otherwise indicated, at $20^{\circ} \mathrm{C}$ relative to $\mathrm{Me}_{4} \mathrm{Sn}$ and $\mathrm{Et}_{4} \mathrm{~Pb}$, respectively. ${ }^{b}$ Differences in ppm between free and complexed species. ${ }^{\text {c }}$ Ref. 16; measured in CDCl_{3}. ${ }^{d}$ Measured for saturated solutions ($<0.25 \mathrm{M}$). ${ }^{e}$ Ref. 17; measured for saturated solutions in CDCl_{3} relative to MePb_{4}, but corrected to $\mathrm{Et}_{4} \mathrm{~Pb}^{/}$Values for saturated solution in $\mathrm{C}_{6} \mathrm{H}_{6}$. ${ }^{8}$ Coupling constants ${ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right.$) were 574.8 and 578.3 Hz for $\mathrm{Ph}_{3} \mathrm{SnI} \cdot$ DMEU and $\mathrm{Ph}_{3} \mathrm{SnI} \cdot$ DMPU, respectively, compared with 567.6 Hz for $\mathrm{Ph}_{3} \mathrm{SnI}$ [16].

